Search results for "neurodevelopmental disorder."

showing 10 items of 102 documents

DLG4-related synaptopathy: a new rare brain disorder

2021

Contains fulltext : 245031.pdf (Publisher’s version ) (Closed access) PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyp…

0301 basic medicineAutism Spectrum Disorder[SDV]Life Sciences [q-bio]030105 genetics & heredityBiology03 medical and health sciencesIntellectual DisabilityIntellectual disabilitymedicineMissense mutationHumansGlobal developmental delayExomeGenetics (clinical)GeneticsBrain DiseasesNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Brainmedicine.disease030104 developmental biologyPhenotypeRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Autism spectrum disorderNeurodevelopmental DisordersSynaptopathyDLG4Postsynaptic densityDisks Large Homolog 4 Protein
researchProduct

RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior

2020

The RBFOX1 gene (or A2BP1) encodes a splicing factor important for neuronal development that has been related to autism spectrum disorder and other neurodevelopmental phenotypes. Evidence from complementary sources suggests that this gene contributes to aggressive behavior. Suggestive associations with RBFOX1 have been identified in genome-wide association studies (GWAS) of anger, conduct disorder, and aggressive behavior. Nominal association signals in RBFOX1 were also found in an epigenome-wide association study (EWAS) of aggressive behavior. Also, variants in this gene affect temporal lobe volume, a brain area that is altered in several aggression-related phenotypes. In animals, this gen…

0301 basic medicineCandidate geneNeuroimagingRBFOX1Genome-wide association studyBiologyEpigenesis GeneticA2BP103 medical and health sciencesAll institutes and research themes of the Radboud University Medical Center0302 clinical medicineGeneticsmedicineAnimalsHumansPharmacology (medical)TranscriptomicsRBFOX1Genetic Association StudiesBiological PsychiatryRegulator genePharmacologyGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]AggressionGenetic Variationmedicine.diseasePhenotypeAnimal modelsAggressionPsychiatry and Mental health030104 developmental biologyNeurologyAutism spectrum disorderEpigeneticsRBFOX1 GeneRNA Splicing FactorsNeurology (clinical)medicine.symptom030217 neurology & neurosurgeryGenome-Wide Association Study
researchProduct

SLC20A1 Is Involved in Urinary Tract and Urorectal Development

2020

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exs…

0301 basic medicineCandidate genePathologyMorpholinoPediatricsEmbryonalentwicklungBlasenekstrophieBladder exstrophyZebrabärbling0302 clinical medicinebladder exstrophy-epispadias complex; CAKUT; cloacal malformation; functional genetics; kidney formation; SLC20A1; urinary tract development; zebrafish developmentbladder exstrophy-epispadias complexUrinary tract; Growth and developmentZebrafishlcsh:QH301-705.5ZebrafishNiereOriginal Researchcloacal malformationKidney; EmbryologyPediatrikzebrafish developmentKidney; Growth and developmentReconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]030220 oncology & carcinogenesisembryonic structuresfunctional geneticsmedicine.symptomSLC20A1medicine.medical_specialtyEpispadiasanimal structuresUrinary systemBiologyKidney cystsCell and Developmental Biology03 medical and health sciencesAll institutes and research themes of the Radboud University Medical Centermedicineddc:610CAKUTNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Cloaca; Abnormalitieskidney formationCell Biologymedicine.diseaseCloacal exstrophybiology.organism_classificationurinary tract developmentReconstructive and regenerative medicine Radboud Institute for Health Sciences [Radboudumc 10]Bladder exstrophy030104 developmental biologyCloaca (embryology)lcsh:Biology (General)Developmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

Autism is a prenatal disorder: Evidence from late gestation brain overgrowth

2018

This retrospective study aimed to specify the critical period for atypical brain development in individuals with autism spectrum disorder (ASD) using prenatal and postnatal head growth parameters. The sample consisted of 80 Caucasian, unrelated, idiopathic patients with ASD born after 1995. Fetal ultrasound parameters (head circumference [HC], abdominal circumference, and femur length) were obtained during the second and third trimesters of gestation. HC at birth and postnatal parameters at 12 and 24 months of age were also collected. Head overgrowth, assessed by HC, was highlighted during the second (20-26 weeks of amenorrhea) and third (28-36 weeks of amenorrhea) trimesters. Normal growth…

0301 basic medicineFetusPediatricsmedicine.medical_specialtybusiness.industryGeneral Neurosciencemedicine.disease03 medical and health sciences030104 developmental biology0302 clinical medicineNeurodevelopmental disorderAutism spectrum disorderIn uteromedicineGestationAutismAmenorrheaNeurology (clinical)medicine.symptombusinessPathological030217 neurology & neurosurgeryGenetics (clinical)Autism Research
researchProduct

L1 syndrome diagnosis complemented with functional analysis of L1CAM variants located to the two N-terminal Ig-like domains

2016

L1CAM gene mutations cause neurodevelopmental disorders collectively termed L1 syndrome. Insufficient information about L1CAM variants complicates clinical prognosis, genetic diagnosis and genetic counseling. We combined clinical data, in silico effect predictions and functional analysis of four L1CAM variants, p.I37N, p.T38M, p.M172I and p.D202Y, located to the two N-terminal Ig-like domains present in five families with symptoms of L1 syndrome. Software tools predicted destabilizing effects of p.I37N and p.D202Y but results for p.T38M and p.M172I were inconsistent. Cell surface expression of mutant proteins L1-T38M, L1-M172I and L1-D202Y was normal. Conversely, L1-I37N accumulated in the …

0301 basic medicineGeneticsmedicine.medical_specialtyL1In silicoEndoplasmic reticulumMutantBiologymedicine.disease03 medical and health sciences030104 developmental biology0302 clinical medicineNeurodevelopmental disorderGeneticsmedicineMedical geneticsProtein foldingProtein maturation030217 neurology & neurosurgeryGenetics (clinical)Clinical Genetics
researchProduct

Influence of gut microbiota on neuropsychiatric disorders

2017

The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson’s dis…

0301 basic medicineHypothalamo-Hypophyseal SystemGut–brain axisPituitary-Adrenal SystemDiseaseGut floraBioinformaticsdigestive systemEpigenesis Genetic03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansBrain-gut axisMicrobiomePsychiatric conditionsbiologyMicrobiotaGastrointestinal MicrobiomeGastroenterologyBrainNeurodegenerative DiseasesMinireviewsGeneral MedicineDNA MethylationFecal Microbiota TransplantationMental illnessmedicine.diseasebiology.organism_classificationGastrointestinal MicrobiomeTransplantationDisease Models Animal030104 developmental biologyNeurodevelopmental DisordersDysbiosisMental healthMicrobiomeDysbiosisStress Psychological030217 neurology & neurosurgeryWorld Journal of Gastroenterology
researchProduct

Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype

2021

Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild dev…

0301 basic medicineIn silicoBiologyArticleREGION03 medical and health sciencesROGERS-DANKS-SYNDROME0302 clinical medicineMissense mutationHISTONE H3GeneGenetics (clinical)Loss functionGeneticsNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]DELETIONDEFECTSMethylationPhenotypeLYSINE 36030104 developmental biologyMolecular mechanismWOLF-HIRSCHHORN-SYNDROME030217 neurology & neurosurgeryFunction (biology)Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]Genetics in Medicine
researchProduct

De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism

2019

Contains fulltext : 202646.pdf (Publisher’s version ) (Open Access) By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone …

0301 basic medicineMaleJumonji Domain-Containing Histone DemethylasesDevelopmental DisabilitiesWEAVER SYNDROMEPROTEINHaploinsufficiencyCraniofacial AbnormalitiesHistones0302 clinical medicineIntellectual disabilityTumours of the digestive tract Radboud Institute for Molecular Life Sciences [Radboudumc 14]Missense mutationDEMETHYLASE KDM3BExomeChildGenetics (clinical)Exome sequencingGeneticsRUBINSTEIN-TAYBI SYNDROMEMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Phenotype030220 oncology & carcinogenesisFemalemedicine.symptomHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Joint hypermobilityGENETICSJMJD1CMutation MissenseDwarfismBiologyShort statureKdm3b ; Cancer Predisposition ; Developmental Delay ; Facial Recognition ; Intellectual Disability ; Leukemia ; Lymphoma ; Short Stature03 medical and health sciencesReportIntellectual DisabilitymedicineHumansMYELOID-LEUKEMIAGenetic Association StudiesGerm-Line MutationWeaver syndromeNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Rubinstein–Taybi syndromeMUTATIONSDELETIONGenetic Variationmedicine.diseaseBody HeightMusculoskeletal AbnormalitiesINDIVIDUALS030104 developmental biologyFaceNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]American Journal of Human Genetics
researchProduct

Heterozygous Variants in KDM4B Lead to Global Developmental Delay and Neuroanatomical Defects

2020

International audience; KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had a…

0301 basic medicineMaleJumonji Domain-Containing Histone Demethylases[SDV]Life Sciences [q-bio]Developmental DisabilitiesCorpus callosumHippocampusEpigenesis GeneticHistonesMice0302 clinical medicineNeurodevelopmental disorderPolymicrogyriaGlobal developmental delayAgenesis of the corpus callosumGenetics (clinical)BrainMagnetic Resonance Imaging[SDV] Life Sciences [q-bio]intellectual disabilityBrain sizeFemaledysmorphic hippocampiSignal TransductionHeterozygoteheterozygous variantglobal developmental delayBiologyNervous System MalformationsMethylation03 medical and health sciencesSeizuresReportKDM4BGeneticsmedicineAnimalsHumansneurodevelopmental disorder.Dentate gyrusGenetic VariationJMJD2Bmedicine.diseaseneurodevelopmental disorder030104 developmental biologyagenesis of the corpus callosumNeuroscienceProtein Processing Post-Translational030217 neurology & neurosurgeryVentriculomegalyAmerican journal of human genetics
researchProduct

Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature

2016

Item does not contain fulltext Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated wi…

0301 basic medicineMaleMESH: Heart Defects Congenital / physiopathologyMicrocephalyPathologyMESH: Heart Defects Congenital / geneticsMESH: Exome / genetics030105 genetics & heredityMESH: RNA Splicing / geneticsMicrophthalmia[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMESH: ChildExomeMESH: RNA Splicing Factors / geneticsChildFrameshift MutationMESH: High-Throughput Nucleotide SequencingGenetics (clinical)Exome sequencingColobomaMESH: Frameshift MutationHigh-Throughput Nucleotide SequencingMicrodeletion syndromeMicrocephaly Verheij syndrome PUF60ChemistryPhenotypeChild PreschoolDISEASESMicrocephalyMedical geneticsFemaleRNA Splicing Factorsmedicine.symptomChromosome DeletionChromosomes Human Pair 8MESH: Dwarfism / genetics*Heart Defects Congenitalmedicine.medical_specialtyGENESAdolescentRNA SplicingMESH: Chromosome DeletionDwarfismBiologyMESH: PhenotypeShort statureArticlePUF6003 medical and health sciencesInternal medicineIntellectual Disability[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansCraniofacialBiologyMESH: AdolescentNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]MESH: HumansMESH: Child Preschoolmedicine.diseaseMESH: Repressor Proteins / geneticsMESH: MaleRepressor Proteins030104 developmental biologyEndocrinologyMESH: Chromosomes Human Pair 8 / geneticsMESH: Dwarfism / physiopathologyMESH: Intellectual Disability / physiopathologyHuman medicineMESH: Intellectual Disability / geneticsVerheij syndromeMESH: Female[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct